
High-Performance Processing of Large
Data Sets via Memory Mapping

A Case Study in R and C++

Daniel Adler, Jens Oelschlägel, Oleg Nenadic, Walter Zucchini

Joint Statistical Meeting - 5th of August 2008 - Denver, USA

Georg-August University Göttingen, Germany - Research Consultant, Munich, Germany

Motivation
Working with large data sets in R is restricted by
virtual memory and the virtual address space.

Motivation
Working with large data sets in R is restricted by
virtual memory and the virtual address space.

R console-mode (standard edition) on Mac OS X 10.5, 4 GB

> numeric(1024^3*2.3/8)
Error: cannot allocate vector of size 2.3 Gb

Motivation
Working with large data sets in R is restricted by
virtual memory and the virtual address space.

R console-mode (standard edition) on Mac OS X 10.5, 4 GB

> numeric(1024^3*2.3/8)
Error: cannot allocate vector of size 2.3 Gb

R console-mode on Linux 2.6 (Ubuntu), 2 GB RAM (Parallels VM)

> numeric(1024^3*2.4/8)
Error: cannot allocate vector of size 2.4 Gb

Motivation
Working with large data sets in R is restricted by
virtual memory and the virtual address space.

R console-mode (standard edition) on Mac OS X 10.5, 4 GB

> numeric(1024^3*2.3/8)
Error: cannot allocate vector of size 2.3 Gb

R on Windows XP, 2 GB RAM (Parallels VM)

> numeric(1024^3*2/8)
Error: cannot allocate vector of size 2.0 Gb
Reached total allocation of 1535Mb..
> memory.limit()
[1] 1535.36

R console-mode on Linux 2.6 (Ubuntu), 2 GB RAM (Parallels VM)

> numeric(1024^3*2.4/8)
Error: cannot allocate vector of size 2.4 Gb

Motivation
Working with large data sets in R is restricted by
virtual memory and the virtual address space.

Kernel User

4 GB Address Space

2 GB User Space

R on 32-Bit Windows

Motivation
Working with large data sets in R is restricted by
virtual memory and the virtual address space.

Kernel User

4 GB Address Space

3 GB User Space

R on 32-Bit Windows
(tweaked with "/3GB")

Motivation
Working with large data sets in R is restricted by
virtual memory and the virtual address space.

User

4 GB Address Space

4 GB User Space

R on 64-Bit Windows

Motivation
Working with large data sets in R is restricted by
virtual memory and the virtual address space.

Goal
Enabling work with large data sets on desktop PCs.

Motivation
Working with large data sets in R is restricted by
virtual memory and the virtual address space.

Goal
Enabling work with large data sets on desktop PCs.

Idea
Data resides on disk storage. Parsimonious use of
virtual address space via “paging”.

Motivation
Working with large data sets in R is restricted by
virtual memory and the virtual address space.

Goal
Enabling work with large data sets on desktop PCs.

Idea
Data resides on disk storage. Parsimonious use of
virtual address space via “paging”.

Efficiency problem
Disk I/O is slow (1 million times slower than RAM).

Overview

• 'ff' low-level C++ Library (Daniel)
Virtual Memory & Memory-Mapping,
Flat Files & Paging

• 'ff' high-level R Package (Jens)
Virtual Atomic Objects, Batch processing,
Data types, Hybrid Indexing

• Performance
Page size & System cache, Enhancements

• Epilog
Possible Improvements & Conclusion

Operating System

Virtual Memory and Memory-Mapping

load/store
data at location

Operating System

Virtual Memory and Memory-Mapping

RAMCPUprocess load/store
data at location

Operating System

Virtual Memory and Memory-Mapping

RAMCPUprocess load/store
data at location

Operating System

Virtual Memory and Memory-Mapping

RAMCPUprocess load/store
data at location

virtual to physical
address translation

Operating System

Virtual Memory and Memory-Mapping

RAMCPUprocess load/store
data at location

virtual to physical
address translation

Operating System

Virtual Memory and Memory-Mapping

RAMCPUprocess load/store
data at location

virtual to physical
address translation

RAM

RAM

Virtual Memory and Memory-Mapping

0 1 2 3 4 5 ...

pagesize (4k = 2^10 bytes)

CPUprocess load/store
data at location

virtual to physical
address translation

RAM

RAM

Virtual Memory and Memory-Mapping

0 1 2 3 4 5 ...

pagesize (4k = 2^10 bytes)

CPU

Virtual Memory Address

offset (10 bits)page number (22 bits)
bit 31 bit 0bit 9

process load/store
data at location

virtual to physical
address translation

RAM

RAM

Process Page Table, e.g

Virtual Memory and Memory-Mapping

0 1 2 3 4 5 ...

pagesize (4k = 2^10 bytes)

Page Physical location

200 RAM page 3

201 RAM page 1

202 N/A

CPU

Virtual Memory Address

offset (10 bits)page number (22 bits)
bit 31 bit 0bit 9

process load/store
data at location

virtual to physical
address translation

RAM

RAM

Process Page Table, e.g

Virtual Memory and Memory-Mapping

0 1 2 3 4 5 ...

pagesize (4k = 2^10 bytes)

Page Physical location

200 RAM page 3

201 Swap file page 5

202 N/A

swap file

CPU

Virtual Memory Address

offset (10 bits)page number (22 bits)
bit 31 bit 0bit 9

process load/store
data at location

virtual to physical
address translation

swap
in & out

0 1 2 3 4

5 6 ...

RAM

RAM

Process Page Table, e.g

Virtual Memory and Memory-Mapping

0 1 2 3 4 5 ...

pagesize (4k = 2^10 bytes)

Page Physical location

200 RAM page 3

201 Swap page 5

202 RAM page 4, File offset

swap file

CPU

Virtual Memory Address

offset (10 bits)page number (22 bits)
bit 31 bit 0bit 9

process load/store
data at location

virtual to physical
address translation

ordinary file

swap
in & out

0 1 2 3 4

5 6 ...

memory
mapping

Flat Files and Paging

• Data resides on hard disk binary flat files.

Flat Files and Paging

• Data resides on hard disk binary flat files.

• One fixed-size file section is mapped into
the process's virtual address space.

Flat Files and Paging

• Data resides on hard disk binary flat files.

• One fixed-size file section is mapped into
the process's virtual address space.

• The file section offset is moveable.

Flat Files and Paging

• Data resides on hard disk binary flat files.

• One fixed-size file section is mapped into
the process's virtual address space.

• The file section offset is moveable.

• Modified sections are written back to disk.

Flat Files and Paging

• Data resides on hard disk binary flat files.

• One fixed-size file section is mapped into
the process's virtual address space.

• The file section offset is moveable.

• Modified sections are written back to disk.

• Virtual address space costs = section size.

Flat Files and Paging

Virtual atomic R objects

Virtual atomic R objects
Creating vectors, matrices, arrays and factors.
> vec <- ff(vmode=”double”,length=100000000)
> mat <- ff(vmode=”double”,dim=c(5000,6000))
> arr <- ff(vmode=”integer”,dim=c(10,200,300))
> fac <- ff(vmode="integer",levels=c('A','B'),length=10e6))

Virtual atomic R objects
Creating vectors, matrices, arrays and factors.
> vec <- ff(vmode=”double”,length=100000000)
> mat <- ff(vmode=”double”,dim=c(5000,6000))
> arr <- ff(vmode=”integer”,dim=c(10,200,300))
> fac <- ff(vmode="integer",levels=c('A','B'),length=10e6))

Standard subsetting in R
> vec[1:1000] <- rnorm(1000)
> sum(mat[c(1,3,4),])
> arr[5:1,100,150]
> fac[] <- 'B'

Virtual atomic R objects
Creating vectors, matrices, arrays and factors.
> vec <- ff(vmode=”double”,length=100000000)
> mat <- ff(vmode=”double”,dim=c(5000,6000))
> arr <- ff(vmode=”integer”,dim=c(10,200,300))
> fac <- ff(vmode="integer",levels=c('A','B'),length=10e6))

Standard subsetting in R
> vec[1:1000] <- rnorm(1000)
> sum(mat[c(1,3,4),])
> arr[5:1,100,150]
> fac[] <- 'B'

Batch processing
> s <- 0
> ffvecapply(s <<- s + sum(vec[i1:i2]), X=vec)
> mymean <- s/length(vec)

data types and packing

data types and packing
vmode size R mode NA handling range

boolean 1 bit logical TRUE,FALSE

logical 2 bit logical NA TRUE,FALSE

quad 2 bit integer 0:3

nibble 4 bit integer 0:15

byte 8 bit integer NA -127:+127

ubyte 8 bit integer 0:255

short 16 bit integer NA -32767:+32767

ushort 16 bit integer 0:65535

integer 32 bit integer NA -(2^31-1):+(2^31-1)

single 32 bit double NA C float

double 64 bit double NA C double

raw 8 bit raw 0:255

Hybrid Indexing

Hybrid Indexing
index expressions are packed (if possible) before evaluated. Saves space!
> vec[1:(length(vec)/2)] <- 1

Hybrid Indexing
index expressions are packed (if possible) before evaluated. Saves space!
> vec[1:(length(vec)/2)] <- 1

otherwise...
> 1:(length(vec)/2)
cannot allocate vector of size 2.0 Gb

Hybrid Indexing
index expressions are packed (if possible) before evaluated. Saves space!
> vec[1:(length(vec)/2)] <- 1

from to by

1 length(vec)/2 1

otherwise...
> 1:(length(vec)/2)
cannot allocate vector of size 2.0 Gb

Page size and system cache

elapsed

p
a
g
e
s
iz
e

64 kb

64 mb

0 50 100 150

mmeachflush

seqread

mmnoflush

seqread

64 kb

64 mb

mmeachflush

seqwrite

mmnoflush

seqwrite

64 kb

64 mb

mmeachflush

randomread

mmnoflush

randomread

64 kb

64 mb

mmeachflush

randomwrite

0 50 100 150

mmnoflush

randomwrite2 GB double ff vector,
10,000,000 random accesses,
Intel Mac OS X 10.5,
4 GB, 2.5 GhZ

Performance Enhancements

• Presorting indices in ascending order to
minimize disk head movements.

• Fast creation of flat files.

• Using system cache to prevent Disk I/O.

• Increase page size to reduce pagings.

• Exploit parallelism; Flat files are shareable
among multiple R processes.

Possible improvements

• Increase index resolution to 52 bits in R.

• Support for mixed-type data frames.

• On-demand presorting indices.

• Automatic adjustments of system cache
usage and page size.

• Paging Garbage Collector?

Conclusion

• Memory-mapping in contrast to stream-
based Disk I/O has advantage of exploiting
system cache and - at the same time - allow
to share pages among multiple processes.

• While system cache enabled will also
consume physical memory it still does not
consume more virtual address space.

Availability of the 'ff' package

• Version 2.0.0 on CRAN (since Monday)
GPL-2, C++ Library ISCL (BSD style)

• Web resources:
http://134.76.173.220/ff *
http://www.truecluster.com/ff.htm

* contains version 1(64 bit internal indexing), slides, datasets

http://134.76.173.220/ff
http://134.76.173.220/ff

