
DISCLOSED

Managing data.frames with package 'ff'
and fast filtering with package 'bit'

Oehlschlägel, Adler

Munich, Göttingen
July 2009

This report contains public intellectual property. It may be used, circulated, quoted, or reproduced for distribution as a
whole. Partial citations require a reference to the author and to the whole document and must not be put into a context
which changes the original meaning. Even if you are not the intended recipient of this report, you are authorized and
encouraged to read it and to act on it. Please note that you read this text on your own risk. It is your responsibility to draw
appropriate conclusions. The author may neither be held responsible for any mistakes the text might contain nor for any
actions that other people carry out after reading this text.

1

SUMMARY

We explain the new capability of package 'ff 2.1.0' to store large dataframes on disk in class 'ffdf'. ffdf objects have a
virtual and a physical component. The virtual component defines a behavior like a standard dataframe, while the
physical component can be organized to optimize the ffdf object for different purposes: minimal creation time,
quickest column access or quickest row access. Furthemore ffdf can be defined without rownames, with in-RAM
rownames or with on-disk rownames using a new ff class 'fffc' for fixed width characters.

Package 'bit' provides fast logical filtering: logical vectors in-RAM with only 1-bit memory consumption. It can be used
standalone, but also nicely integrates with package 'ff': 'bit' objects can be coerced to boolean 'ff' and vice-versa (as.ff,
as.bit), 'bit' objects can also be coerced to 'ff's subscript objects (as.hi). The latter and many other methods support a
'range' argument, which helps batched processing of large objects in small memory chunks.

The following methods are available for objects of class 'bit': logical operators: !, !=, ==, <=, >=, <, >, &, |, xor;
aggregation methods: all, any, max, min, range, summary, sum, length; access methods: [[, [[<-, [, [<-; concatenation:
c, coercion: as.bit, as.logical, as.integer, which, as.bitwitch. The bit-operations are by factor 32 faster on 32-bit
machines. In order to fully exploit this speed, package 'bit' comes with minimal checking.

A second class 'bitwhich' allows storing boolean vectors in a way compatible with R's subscripting, but more
efficiently than logical vectors: all==TRUE is represented as TRUE, !any is represented as FALSE, other selections
are represented by positive or negative integer subscripts, whatever needs less ram. Logical operators !, &, |, xor use
set operations which is efficient for highly skewed (asymmetric) data, where either a small part of the data is selected
or excluded and such filters are to be combined.

We show how packages 'ff' and 'snowfall' nicely complement each other: snowfall helps to parallelize chunked
processing on 'ff' objects, and 'ff' objects allow exchanging data between snowfall master and slaves without memory
duplication. We give an online demo of 'ff', 'bit' and 'snowfall' on a standard notebook with an 80 mio row dataframe –
size of a German census :-)

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

2

OVERVIEW

Package 'ff' 2.1.0
• provides large, fast disk-based vectors and arrays
• NEW: fast length()<- increase for ff vectors
• NEW: dataframes (ffdf) and fixed width characters (fffc)
• NEW: lean datatypes on CRAN under GPL

Package 'bit' 1.1.0
• Class 'bit': lean in-memory boolean vectors + fast operators
• Class 'bitwhich': alternative for very skewed filters
• Close integration with ff objects and chunked processing

Parallel
chunking

• Adding package 'snowfall' to 'ff'
allows for easy distributed chunked processing

• Adding package 'ff' to 'snowfall'
allows master sending/receiving datasets to/from slaves
without memory duplication
(large bootstrapping, special bagging support, ...)

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

3

Putting 'ff' in perspective with regard to size and some alternatives

R

bigmemory

ff

column DB
(MonetDB)

row DBs
(Postgres, Oracle, …)

in-RAM multiple
copies by value

in-RAM single
copy by reference

on-disk
memory-mapped

on-disk
DB-cached

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

4

Comparing 'ff' to RAM-based alternatives: what are they good at?

R

bigmemory

ff

small dataset

medium dataset

many medium
or large datasets

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

5

Comparing 'ff' to disk-based alternatives: what are they good at?

ff

column DBs

row DBs
(b*-tree, bitmap, r-tree)

many small
OLTP queries

(e.g. find and update
single row)

large simple
OLAP queries

(e.g. column-sums
across majority of

rows)

large complex
read and write

operations
(e.g. kernel-smoothing)

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

6

ffdf dataframes separate virtual layout from physical storage

matrix ff_matrix

data.frame(matrix) ffdf(ff_matrix)

copied to vectors

by default
physically not copied

virtually mapped

Full flexibility of
physical vs.
virtual
representation
via
I()
ff_join
ff_split

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

7

EXAMPLE I – create ff vectors with 80 Mio elements as input to ffdf

library(ff) # loads library(bit)
options(fffinalizer='close') # let snowfall not delete on remove
N <- 8e7 # sample size
n <- 1e6 # chunk size

genders <- factor(c("male","female"))

gender <- ff(genders, vmode='quad', length=N, update=FALSE)
for (i in chunk(1,N,n)){
print(i)
gender[i] <- sample(genders, sum(i), TRUE)

}
gender

load the other prepared ff vectors
load(file="d:/tmp/ff.RData")
open(year); open(country); open(age); open(income)
ls()

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

8

EXAMPLE I – create and access ffdf data.frame with 80 Mio rows

create a data.frame
x <- ffdf(country=country, year=year, gender=gender, age=age
, income=income)
x
vmode(x)
only 630 MB on disk instead of 1.8 GB in RAM
=> factor 3 RAM savings in file-system cache
sum(.ffbytes[vmode(x)]) * 8e7 / 1024^2
sum(.rambytes[vmode(x)]) * 8e7 / 1024^2
object.size(physical(x))

x$country # return 1 ff column
x[["country"]] # dito

x[c("country", "year")] # return ffdf with selected columns

x[1:10, c("country", "year")] # return 2 RAM data.frame columns
x[1:10,] # return 10 data.frame rows
x[1,,drop=TRUE] # return 1 row as list

all these have <- assignment functions

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

9

EXAMPLE I – ff objects can be grown at no penalty

nrow(x)
system.time(nrow(x) <- 1e8)
after 0 seconds we have a dataframe with 100 Mio rows
x

nrow(x) <- 8e7
back to original size for the following example

Useful for e.g. chunked reading of a csv

Difficult to do with in-memory objects

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

10

Packages 'ff' + 'bit' support a variety of important access scenarios

random
access

sequential
access

unpredictable
search condition

BI
drill-down

R fast
if fits in-memory

fast
if fits in-memory

fast
if small data

combine
logicals

bigmemory as fast as possible
if fits in-memory

as fast as possible
if fits in-memory

- -2

ff as fast as possible
if large chunks

as fast as possible
if chunked

- combine
bit filters

MonetDB - as fast as possible
if many rows

as fast as possible
if many rows1

-

row DBs - - b*-tree, bitmap combine
bitmaps

WHERE country = 'France'
↓

WHERE country = 'France'
AND year IN (2008, 2009)

1 so far not delivered compiled with experimental 'cracking' option
2 might also benefit from bit filters in future releases

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

11

Package 'bit' supports lean in-RAM storage
of booleans and fast combination of booleans

Disadvantage of processing
two conditions at once

Advantage of processing
two conditions one by one

• double load
on memory-mapped
file-system-cache

• double wait time
after user action

• half load
on memory-mapped
file-system-cache

• half wait time
between user actions

c
o
u
n
t
r
y

=
=

'
F
r
a
n
c
e
'

y
e
a
r

%
i
n
%

c
(
2
0
0
8
,

2
0
0
9
)

moving chunk

in R's memory

in fs-cache

moving
chunk

a & ba ba & b

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

12

EXAMPLE II – create, combine and coerce filters with 80 Mio bits

create bit object
fcountry <- bit(N)
fyear <- bit(N)
process chunks and write to bit object
system.time(for (i in chunk(1,N,n)){

fcountry[i] <- x$country[i] == 'FR'
})

system.time(for (i in chunk(1,N,n)){
fyear[i] <- x$year[i] %in% c(2008,2009)

})
combine with boolean operator
system.time(filter <- fcountry & fyear)

summary(filter) # check filter summary, then use
summary(filter, range=c(1, 8e6)) # dito for chunk
filter combined with range index and automatically coerced as.hi
summary(x[filter & ri(1,8e6, N),], maxsum = 12)

coercing
h <- as.hi(filter) # coerce chunk: as.hi(filter, range=c(1,8e6))
as.bit(h)
f <- as.ff(filter)
as.bit(f)

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

13

PARALLEL BOOTSTRAP with snowfall (R Journal 1/1)

Master Slaves

5 times RAM on Quadcore == max dataset size is 1/5th

RAM
for

data

RAM
copy

RAM
copy

RAM
copy

RAM
copy

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

14

Negligible RAM duplication for parallel execution on ff with snowfall

Hard Disk

Fs
cache

R R R R R

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

15

Thus same RAM will allow much larger datasets if using ff

Hard Disk

file
system
cache

(compressed)

RR R R R

R
RAM

R
RAM

R
RAM

R
RAM

R
RAM

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

16

EXAMPLE III – parallel subsampling with 'ff' and 'snowfall'

library(snowfall)
wrapper <- function(n){
colMeans(x[sample(nrow(x), n, TRUE), c("age","income")])

}

sfInit(parallel=TRUE, cpus=2, type="SOCK")
sfLibrary(ff)
sfExport("x")
sfClusterSetupRNG()
system.time(y <- sfLapply(rep(10000, 200), wrapper))
sfStop()

z <- do.call("rbind", y)
summary(z)

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

17

Low latency-times for adding votes in bagging

Fs
cache

Slow R code

x[i,,add=TRUE] <- 1L

Fast C++ code

1.
where
to add
votes: i

2.
read

current
votes

3.
write
incremented
votes

short latency time minimizes
collision risk without locking

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

18

EXAMPLE IV – rare collisions in parallel bagging with ff and snowfall

library(ff)
library(snowfall)
N <- 10000000 # sample size
n <- 100000 # sub-sample size
r <- 10 # number of subsamples
x <- ff(0L, length=N) # worst case: all votings are collected in
the same column (like in perfect prediction)
wrapper <- function(i){
x[sample(N, n), add=TRUE] <- 1L
NULL

}
sfInit(parallel=TRUE, cpus=2, type="SOCK")
sfLibrary(ff)
sfExport("x")
sfExport("N")
sfExport("n")
sfClusterSetupRNG()
system.time(sfLapply(1:r, wrapper))
sfStop()
e <- r*n; m <- e - sum(x[]); cat("expected votes", e, "absolute
votes lost", m, " votes lost% =", 100 * m/e, "= 1 /", e/m, "\n")

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

19

FF FUTURE

what we work at
• transparent partitioning of ff objects
• simplified processing of ff objects (R.ff)

what we not plan
in the near future

• Native fixed-width characters or variable-width characters
• Complex type
• Generalize ff_array to ff_mixed structure
• Indexing (b*tree and bitmap with e.g. Fastbit)
• svd and friends1

what others
easily could do

• ffcsv package providing efficient import/export of csv files
• ffsql package providing exchange with SQL databases
• statistical and graphical methods that work with ff objects

1 As an exception to this rule, R.ff will contain a svd routine – suitable in specific contexts – donated by John Nash
Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

20

CONCLUSION

large data.frames
• R now has a data.frame class ffdf allowing for 2.14 bil. rows
• Memory need for file-system cache can be reduced by using

lean data types (boolean, byte, small, single etc.)

fast selections
• Package 'bit' provides three classes for managing selections

on large objects quickly, in a way appropriate to R rather
than re-inventing what is available elsewhere.

chunking +
parallel execution

• Package 'bit' helps with easy chunking and package 'ff' and
'snowfall' complement each other for speeding-up
calculations on large datasets.

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

21

AUTHORS

Jens Oehlschlägel Jens_Oehlschlaegel@truecluster.com

ff 2.0
bit 1.01

bit 1.1
ff 2.1

Daniel Adler dadler@uni-goettingen.de

ff 1.0
ff 2.0
ff 2.1

1 Thanks to Stavros Macrakis for some helpful comments on bit 1.0
Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

22

SOME DETAILS
NOT PRESENTED
IN THE SESSION

23

SUPPORTED DATA TYPES

boolean

logical

quad

nibble

byte

ubyte

short

ushort

integer

single

double

complex

raw

character

1 bit logical without NA

2 bit logical with NA

2 bit unsigned integer without NA

4 bit unsigned integer without NA

8 bit signed integer with NA

8 bit unsigned integer without NA

16 bit signed integer with NA

16 bit unsigned integer without NA

32 bit signed integer with NA

32 bit float

64 bit float

2x64 bit float

8 bit unsigned char

fixed widths, tbd.

native

indirect via raw matrix

not implementedvmode(x)

factor
ordered
POSIXct
POSIXlt

example
x <- ff(0:3
, vmode="quad")

Compounds

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

24

SUPPORTED DATA STRUCTURES soon on CRAN

prototype available

not yet implemented

c("ff_vector","ff")

c("ff_array","ff")

c("ff_matrix","ff_array","ff")

c("ffdf","ff")

c("ff_dist","ff_symm","ff")

c("ff_mixed", "ff")

vector

array

matrix

data.frame

symmetric matrix
with free diag

symmetric matrix
with fixed diag

distance matrix

mixed type arrays
instead of

data.frames

class(x)

ff(1:12)

ff(1:12, dim=c(2,2,3))

ff(1:12, dim=c(3,4))

ffdf(sex=a, age=b)

ff(1:6, dim=c(3,3)
, symm=TRUE, fixdiag=NULL)

ff(1:3, dim=c(3,3)
, symm=TRUE, fixdiag=0)

example

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

25

SUPPORTED INDEX EXPRESSIONS implemeneted

not implemented

x[1 ,1]

x[-(2:12)]

x[c(TRUE, FALSE, FALSE) ,1]

x["a" ,1]

x[rbind(c(1,1))]

x[bit1 & bit2 ,]

x[as.bitwhich(...) ,]

x[ri(chunk_start,chunk_end) ,]

x[as.hi(...) ,1]

x[0]

x[NA]

positive integers

negative integers

logical

character

integer matrices

bit

bitwhich

range index

hybrid index

zeros

NAs

x <- ff(1:12, dim=c(3,4), dimnames=list(letters[1:3], NULL))

Exampleexpression

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

26

INDICATION AND CONTRA-INDICATION for 'ff'

• Fast access to large data volumes directly in R
– Data too large for RAM
– Too many datasets
– Too many copies of the same data

• Sharing data between parallel R slaves running on a multi-
core machine (snowfall)

Reasons for
using ff

Reasons for
not using ff

• Speed matters with small datasets and everything fits into
RAM (multiple times possibly)

• Dataset size requires more than 2.14 billion elements per
atomic or more than 2.14 / fixed-width billion elements per
atomic character

• Data needed at the same time in the fs-cache exhausts
available memory (900MB under Win32) and swapping
exhausts acceptable execution time.

• B*-tree like searching is required (use row database)
• Simple large queries only (use column-DB like MonetDB or

row-DB with bitmap indexing.
• Transparent locking required (use bigmemory or row-DB)

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

27

INDICATION AND CONTRA-INDICATION for 'bit'

Reasons for
using bit

• Saving RAM for booleans
• Faster boolean operations

Reasons for
not using bit

• NAs needed (tri-boolean)
• Simple condition only needed once for subscripting

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

28

Performance tests 0.19 GB doubles
Windows XP 32 bit 3GB RAM RGui 2.8.1

5000 x 5000 R ff bigmemory filebacked

Create 0.40

0.75

0.55

0,60

0.70

0.00 0.00 78.90

Colwrite 2.55 2.02 2.20

Colread 2.17 3.42 3.45

Rowwrite 3.95 2.13 2.40

Rowread 3.70 3.50 4.10

250000 x 100 R ffdf

79.66 0.50

2.87

3.02

11.23

15.83

46.00

0

48.50

0.95

ff bigmemory filebacked

Create 0.02 0.03 1.92

Colwrite 2.22 2.20 2.35

Colread 2.16 3.85 3.92

Rowwrite 2.44 1.45 1.50

Rowread 2.21 3.90 4.05

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

29

Performance tests 3.05 GB doubles (x 16)
Windows XP 32 bit 3GB RAM RGui 2.8.1

20000 x 20000 factor => ff

Create

x 32

x 37

x 5200

x 81

0.00

Colwrite 77

Colread 78

Rowwrite 20800

Rowread 403

4000000 x 100 factor => ffdf

x 4 2

91

100

775

820

x 32

x 33

x 69

x 52

ff <= factor

Create 0.02

Colwrite 85 x 38

Colread 77 x 36

Rowwrite 1748 x 722

Rowread 704 x 320

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

30

EXAMPLE I – preparation

library(ff) # loads library(bit)
N <- 8e7; n <- 1e6
countries <- factor(c('FR','ES','PT','IT','DE','GB','NL','SE','DK'
,'FI'))
years <- 2000:2009; genders <- factor(c("male","female"))

9 sec
country <- ff(countries, vmode='ubyte', length=N, update=FALSE
, filename="d:/tmp/country.ff", finalizer="close")
for (i in chunk(1,N,n))
country[i] <- sample(countries, sum(i), TRUE)

9 sec
year <- ff(years, vmode='ushort', length=N, update=FALSE
, filename="d:/tmp/year.ff", finalizer="close")
for (i in chunk(1,N,n))
year[i] <- sample(years, sum(i), TRUE)

9 sec
gender <- ff(genders, vmode='quad', length=N, update=FALSE)
for (i in chunk(1,N,n))
gender[i] <- sample(genders, sum(i), TRUE)

90 sec
age <- ff(0, vmode='ubyte', length=N, update=FALSE

, filename="d:/tmp/age.ff", finalizer="close")
for (i in chunk(1,N,n))
age[i] <- ifelse(gender[i]=="male"
, rnorm(sum(i), 40, 10), rnorm(sum(i), 50, 12))

90 sec
income <- ff(0, vmode='single', length=N, update=FALSE

, filename="d:/tmp/income.ff", finalizer="close")
for (i in chunk(1,N,n))
income[i] <- ifelse(gender[i]=="male"
, rnorm(sum(i), 34000, 5000), rnorm(sum(i), 30000, 6000))

close(age); close(income); close(country); close(year)
save(age, income, country, year, countries, years, genders, N, n, file="d:/tmp/ff.RData")

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

