
DISCLOSED

Coordinating package 'ff' for large
objects with R base

Oehlschlägel, Adler

Munich, Göttingen

July 2009

This report contains public intellectual property. It may be used, circulated, quoted, or reproduced for distribution as a
whole. Partial citations require a reference to the author and to the whole document and must not be put into a context

which changes the original meaning. Even if you are not the intended recipient of this report, you are authorized and
encouraged to read it and to act on it. Please note that you read this text on your own risk. It is your responsibility to draw

appropriate conclusions. The author may neither be held responsible for any mistakes the text might contain nor for any

actions that other people carry out after reading this text.

1

Context of discussion

Package 'bit' 1.1.0

Package 'ff' 2.1.0
• provides large, fast disk-based vectors and arrays
• NEW: dataframes with up to 2.14 billion rows

• NEW: lean datatypes on CRAN under GPL, e.g. 2bit factors
• NEW: fixed width characters (fffc)
• NEW: fast length()<- increase for ff vectors

• Class 'bit': lean in-memory boolean vectors + fast operators
• NEW: class 'ri' (range-index) for chunked-processing

• NEW: class 'bitwhich': alternative for very skewed filters
• NEW: close integration with ff objects and chunked processing

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

Package 'R.ff'
• GOAL: convert standard R into a system, that provides the most

commonly used methods for ff as well as for standard RAM
objects (math, operators, data manipulation etc.) and do this

PURELY in R.
• QUESTION: is this possible with a separate package, or do we

need to more closely integrate R base with large object
capabilities?

• ANSWER: seems somewhat possible but is not clever to do

this!

2

EXAMPLE I – preparation

Source: Oehlschlägel, Adler (2009) Managing data.frames with package 'ff' and fast filtering with package 'bit'

library(ff) # loads library(bit)

N <- 8e7; n <- 1e6

countries <- factor(c('FR','ES','PT','IT','DE','GB','NL','SE','DK','FI'))

years <- 2000:2009; genders <- factor(c("male","female"))

country <- ff(countries, vmode='ubyte', length=N, update=FALSE, filename="d:/tmp/country.ff", finalizer="close")

for (i in chunk(1,N,n)) country[i] <- sample(countries, sum(i), TRUE) # 9 sec

year <- ff(years, vmode='ushort', length=N, update=FALSE, filename="d:/tmp/year.ff", finalizer="close")

for (i in chunk(1,N,n)) year[i] <- sample(years, sum(i), TRUE) # 9 sec

gender <- ff(genders, vmode='quad', length=N, update=FALSE, filename="d:/tmp/gender.ff", finalizer="close")

for (i in chunk(1,N,n)) gender[i] <- sample(genders, sum(i), TRUE) # 9 sec

age <- ff(0, vmode='ubyte', length=N, update=FALSE, filename="d:/tmp/age.ff", finalizer="close")

for (i in chunk(1,N,n)) age[i] <- ifelse(gender[i]=="male", rnorm(sum(i), 40, 10), rnorm(sum(i), 50, 12)) # 90 sec

income <- ff(0, vmode='single', length=N, update=FALSE, filename="d:/tmp/income.ff", finalizer="close")

for (i in chunk(1,N,n)) income[i] <- ifelse(gender[i]=="male", rnorm(sum(i), 34000, 5000), rnorm(sum(i), 30000, 6000)) # 90 sec

x <- ffdf(country=country, year=year, gender=gender, age=age, income=income)

fcountry <- bit(N)

fyear <- bit(N)

for (i in chunk(1,N,n)) fcountry[i] <- x$country[i] == 'FR' # 20 sec

for (i in chunk(1,N,n)) fyear[i] <- x$year[i] %in% c(2008,2009) # 20 sec

close(x)

save.image(file="d:/tmp/ffbit.RData")

3

Short demo of 'ff' with 'bit'

library(ff) # loads library(bit)

load(file="d:/tmp/ffbit.RData") # load some ff and bit objects

open(x) # open ffdf (all embedded vectors)

x[1:10,] # subscripting returns data.frame

sum(.rambytes[vmode(x)]) * 8e7 / 1024^2 # instead of 1.8 GB in RAM

sum(.ffbytes[vmode(x)]) * 8e7 / 1024^2 # only 630 MB disk/fs-cache

object.size(physical(x)) # and 9k in R's RAM

fcountry

filter <- fcountry & fyear

summary(filter) # check filter summary, then use

summary(filter, range=c(1, 1000)) # dito for chunk

summary(x[filter & ri(1,8e6, N),], maxsum = 12)

filter combined with range index and used as subscript to ffdf

nrow(x)

nrow(x) <- 1e8

x[c(1,1e8),]

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

4

NOTE the following peculiarities

library(ff) # loads library(bit)

load(file="d:/tmp/ffbit.RData") # load some ff and bit objects

open(x) # open ffdf (all embedded vectors)

x[1:10,] # subscripting returns data.frame

sum(.rambytes[vmode(x)]) * 8e7 / 1024^2 # instead of 1.8 GB in RAM

sum(.ffbytes[vmode(x)]) * 8e7 / 1024^2 # only 630 MB disk/fs-cache

object.size(physical(x)) # and 9k in R's RAM

fcountry

filter <- fcountry & fyear

summary(filter) # check filter summary, then use

summary(filter, range=c(1, 1000)) # dito for chunk

summary(x[filter & ri(1,8e6, N),], maxsum = 12)

filter combined with range index and used as subscript to ffdf

nrow(x)

nrow(x) <- 1e8

x[c(1,1e8),]

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

subscripting ffdf did

return something

very usefull … but a

different class

'bit' subscripts are

unknown to standard R

assignment to local variable

did not create a local copy

but

changed the global original

through a reference

5

Is R too functional a language? Sometimes there is too much copying!

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

> n <- 1e8

> y <- double(n)

> gctorture(on = TRUE)

> attr(y, "a") <- 1

> gctorture(on = TRUE)

> attr(y, "b") <- 2

Fehler: kann Vektor der Größe 762.9 MB nicht allozieren

Zusätzlich: Warnmeldungen:

1: In attr(y, "b") <- 2 :

Reached total allocation of 1535Mb: see help(memory.size)

2: In attr(y, "b") <- 2 :

Reached total allocation of 1535Mb: see help(memory.size)

3: In attr(y, "b") <- 2 :

Reached total allocation of 1535Mb: see help(memory.size)

4: In attr(y, "b") <- 2 :

Reached total allocation of 1535Mb: see help(memory.size)

Can a functional language hande large data with all its copying?

6

Is R a functional programming language at all?

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

> f<- function(x){

x[] <- x[] + 1L

return(x)

}

> y <- matrix(1L, nrow=1, ncol=2)

> z <- f(y)

> y[]

[,1] [,2]

[1,] 1 1

> z[]

[,1] [,2]

[1,] 2 2

> library(bigmemory)

> y <- big.matrix(1, 2, type = "integer", init=1L)

> z <- f(y)

> y[]

[1] 2 2

> z[]

[1] 2 2

7

Don't blame "bigmemory" or "ff"!

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

> f<- function(x){

+ x$a <- x$a + 1L

+ return(x)

+ }

>

> y <- data.frame(a=1)

> z <- f(x)

> y$a

[1] 1

> z$a

[1] 2

> y <- new.env()

> y$a <- 1

> z <- f(y)

> y$a

[1] 2

> z$a

[1] 2

8

ff can do both – but it reads a bit clumsy …

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

> library(ff)

> fref <- function(x){x[1] <- x[1]+1; x}

> fval <- function(x){x <- clone(x); x[1] <- x[1]+1; x}

> y <- ff(1)

> fref(y)

ff (open) double length=1 (1)

[1]

2

> y

ff (open) double length=1 (1)

[1]

2

> fval(y)

ff (open) double length=1 (1)

[1]

3

> y

ff (open) double length=1 (1)

[1]

2

… and ask for explicit cloning of RAM objects would destroy R as a
functinal programming language

9

What about an easy to read and explicit syntax?

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

ff[i]

dispatches to "[.ff"

ff[i] <- value

dispatches to "[<-.ff" and clones ff before assigning value

value -> ff[i]

dispatches to "->[.ff" and assigns value by reference

How to pass a return object into a function or expression for reuse?

currently R.ff does

newff <- aff + bff

oldff <- "+"(aff, bff, FF_RETURN=oldff)

then R.ff could read

newff <- aff + bff

aff + bff -> oldff

10

What should ff[i] return?

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

Class ff

+ returns consistent class

- kills performance because we need to copy from larger to

smaller ff on disk and then coerce to standard RAM object:
as.ram(ff[i])

Standard vector

Current implementation

+ returns much faster

- returns inconsistent class

Class ff with

virtual window

+ returns much faster (but still needs coercion)

- returns relatively consistent class (still ff, just with different vw)

- vw complicates virtual-to-physical subscript translation

- vw does not allow for arbitrary subscripts

Class ff with any

virtual selection

+ fully consistent

- more indirect subscript processing costing performance,

e.g. by attaching a 'bit' vector storing the virtual selection,

translating each new subscript to 'bit' and return '&' of both

11

[.AsIs

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

Currently R has:

> get("[.AsIs")

function (x, i, ...)

structure(NextMethod("["), class = class(x))

assuning that [.class always returns the same class

ff fixes this by

assignInNamespace(

"[.AsIs"

, function (x, i, ...){

ret <- NextMethod("[")

oldClass(ret) <- c("AsIs", oldClass(ret))

ret

}

, "base"

)

Should go into Base R

12

Double inheritance and triple method dispatch

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

> class(x$gender)

[1] "ff_vector" "ff"

> class(x$gender[1:10])

[1] "factor"

x$gender inherits from both – 'ff' and 'factor'

i.e. we have a two-dimensional class inheritance

currently:

when subscripting, we restore class attributes of the vector

however, second dimension is invisible in first class call

and adding an S3 class fails

in

x$gender[filter]

"[" needs to be dispatched

on classes of the object 'ff' and 'factor'

and on class 'bit' of the subscript

i.e. we have dispatch on three classes

currently:

we coerce the subscript to class 'hi', ff's hybrid index class

13

Are we done by simply using S4 classes? 6-dimensional dispatch?

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

What about the speed of the S4 class system?

Matrix has

3-dimensional dispatch

R.ff could add yet another

3-dimensions

• storage.type

• dense vs. sparse

• type of matrix

• RAM vs. disk based

• whole vs. chunked processing

• type of subscripts

Does S4 really solves all issues that arise in context of large

objects?

• E.g. chunked iterating over all data

• Upper limit of chunk size to reduce RAM-need

• Lower limit on chunk size to avoid costly disk access

• Distributed calculation on multiple cores / cluster nodes

• Partitioned physical storage

let's look at

subscripts

14

We need more data-types and subscript-types

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

old data types

• logical

• integer (positive, negative)

• character (names)

data type

!=

subscript type

• as.integer(logical)
• which(logical) => make generic either which or as.which

new subscript

types

• 64bit integer for virtual addressing

(not necessarily 64bit pointers for physical addressing)

• which (need generic 'which' or 'as.which' for stricly positive)

• bit

• whichbit (FALSE or negint or posint or TRUE)

• ri (range index identifying a virtual chunk)

• hi (hybrid index storing the sorted, compressed physical access

positions)

• … ?

virtual subscript

!=

physical position

Is a consequence of

• virtual windows (vw)

• Different mappings from virtual structure to physical storage

(e.g. non-standard dimorder, block cyclic layout for PBLAS)

15

Remember that subscripting is implicit looping

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

take

ff2[bit] <- ff1[bit]

what we want is a

possibly compiled, chunked and parallelized iteration aka

foreach (i in bit) %dopar% {ff2[i] <- ff1[i]}

and what we want to avoid is evaluation of i1:i2 in

foreach (i in i1:i2) %dopar% {ff2[i] <- ff1[i]}

Outer loop over

4-byte integers

kept in

processors cache

inner loop over

the 32bits

of each integer

16

Thesis: speed optimization with C-code is evil: let's kill .Call()

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

• An old rule in S says: do use the appropriate access function, do not rely on the internal

structure of an object

• .Call is a severe violation of this – sensible – rule

• Calling C-code to obtain a faster looping of an operation over the elements of a vector

assumes the vector is in-RAM and kills compatibility because it bypasses necessary method

dispatches (e.g. if a 'vector' is 'ff' instead of standard RAM

• Doing method dispatches during the loop would clearly kill performance

• Can't we have the dispatches in a looped expression BEFORE the loop and then do a

compiled iteration with callbacks to the resolved functions?

• In order to do this, we would need to know that the dispatch would never change during the

loop, i.e. that the classes of the involved objects do not change during the loop.

• Such a context information could be provided to the interpreter using expression attributes

• This would allow to write algorithms for untyped – but stable – objects

• Daniel Adler and Philipp Tassilo have proven with their revolutionary Rdyncall that a static

foreign language interface like .Call is not needed to call binary code

17

Challenge: efficient processing might need physical iteration sequence
different from virtual iteration sequence

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

take

cumsum(vector[sample(length(vector))])

or

cumsum(vt(matrix)) # virtually transposed matrix

naively iterated would crazily jump between file positions

the latter can be indirectly chunked

by using block cyclic design of the matrix

the former requires chunking of the loop itself

18

Example for chunked looping

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

y <- ff(vmode="integer", length=100)

chunk(1, 100, 30)

for (i in chunk(1, 100, 30)) y[i] <- i[1]:i[2]

b <- bit(100)

for (i in chunk(1, 100, 30)) b[i] <- y[i] > 50

summary(b)

What is the best chunk size – given available RAM, physical partition and
number of cores?

19

Candidates for expression attributes

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

require strict sequential processing

does not exist in SQL – R is more flexible

{expr1, expr2, .sequential=TRUE}

allow parallelization

{expr1, expr2, .sequential=FALSE}

how to parallelize

{expr1, expr2, .parallel="multicore"}

{expr1, expr2, .parallel="MPI"}

when to dispatch

{expr1, expr2, .dispatch="static"}

{expr1, expr2, .dispatch="dynamic"}

when to parse

{expr1, expr2, .parse="compile"}

{expr1, expr2, .parse="interpret"}

20

Candidates for function attributes

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

runif(n=4, min=c(1, 10, 100), max=c(2, 20, 200))

not

recyled

recyled recyled

return

length

taken

from

this

scalar

or length

of this

object

return

type

taken

from

??

21

Other topics

Source: Oehlschlägel, Adler (2009) Coordinating package 'ff' for large objects with R base.

• efficient and identical ordering: quicksort vs. merge sort

• indexing (b-tree, quad-tree, r-trees, …)

• summary is too dynamic in its return structure

• factor treatment is inconsistent, compare c() and rbind.data.frame()

• ffapply: expressions or function calls?

• transparent partitioning of ff into smaller files could help performance, could this be

synchronized with with pblas?

22

SOME DETAILS
NOT PRESENTED
IN THE SESSION

23

Atomic data types supported by ff

boolean

logical

quad

nibble

byte

ubyte

short

ushort

integer

single

double

complex

raw

character

1 bit logical no NA

2 bit logical with NA

2 bit unsigned integer no NA

4 bit unsigned integer no NA

8 bit signed integer with NA

8 bit unsigned integer no NA

16 bit signed integer with NA

16 bit unsigned integer no NA

32 bit signed integer with NA

32 bit float

64 bit float

2x64 bit float

8 bit unsigned char

fixed widths, tbd.

implemented

not implemented

vmode(x)

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

Compounds

factor

ordered

custom compounds

•Date

•POSIXct

•POSIXlt (not atomic)

24

Supported data structures

c("ff_vector","ff")

c("ff_array","ff")

c("ff_matrix","ff_array","ff")

c("ffdf","ff")

c("ff_dist","ff_symm","ff")

c("ff_mixed", "ff")

vector

array

matrix

data.frame

symmetric matrix

with free diag

symmetric matrix

with fixed diag

distance matrix

mixed type arrays

instead of

data.frames

soon on CRAN

prototype available

not yet implemented

class(x)

ff(1:12)

ff(1:12, dim=c(2,2,3))

ff(1:12, dim=c(3,4))

ffdf(sex=a, age=b)

ff(1:6, dim=c(3,3)

, symm=TRUE, fixdiag=NULL)

ff(1:3, dim=c(3,3)

, symm=TRUE, fixdiag=0)

example

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

25

Supported index expressions

x[1, 1]

x[-(2:12)]

x[c(TRUE, FALSE, FALSE), 1]

x["a", 1]

x[rbind(c(1,1))]

x[i & i, 1]

x[as.bitwhich(i), 1]

x[ri(1,1), 1]

x[as.hi(1) ,1]

x[0]

x[NA]

(which) positive integers

negative integers

logical

character

integer matrices

bit

bitwhich

range index

hybrid index

zeros

NAs

implemeneted

not implemented

x <- ff(1:12, dim=c(3,4), dimnames=list(letters[1:3], NULL))

i <- as.bit(c(TRUE, FALSE, FALSE))

Example

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

expression

ff's internal index

