
DISCLOSED

Managing large datasets in R
– ff examples and concepts

Jens Oehlschlägel

Vienna

January 2010

This report contains public intellectual property. It may be used, circulated, quoted, or reproduced for distribution as a
whole. Partial citations require a reference to the author and to the whole document and must not be put into a context

which changes the original meaning. Even if you are not the intended recipient of this report, you are authorized and
encouraged to read it and to act on it. Please note that you read this text on your own risk. It is your responsibility to draw

appropriate conclusions. The author may neither be held responsible for any mistakes the text might contain nor for any

actions that other people carry out after reading this text.

1

Summary

The statistical interpreter R is hungry for RAM
and therefore limited to dataset sizes much

smaller than available RAM. R packages 'bit'

and 'ff' provide the basic infrastructure to
handle large data problems in R. In this

session we give an introduction into 'bit' and 'ff'
– interweaving working examples with short

explanation of the most important concepts.

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

2

An open-source vision for R

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

give free access to excellent

statistical software to everyone …

… for processing large datasets

even with standard hardware

3

Design goals: base packages for large data objects in R

standard HW

minimal RAM

large data
• many objects (sum(sizes) > RAM and …)

• large objects (size > RAM and virtual address space

limitations)

• limited RAM (or enjoy speedups)

• single disk (or enjoy RAID)

• single processor (or shared processing)

• required RAM << maximum RAM

• be able to process large data in background

maximum

performance

• close to in-RAM performance if size < RAM (system cache)

• still able to process if size > RAM

• avoid costs of redundant access to disk (time, electricity, CO2)

"the cloud"

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

4

Authors

dadler@uni-goettingen.deDaniel Adler

package rgl

package ff since 1.0

dyncall project: dynamic C interface

in work: dynamic compilation and streaming for R

Jens_Oehlschlaegel@truecluster.comJens Oehlschlägel

package bit since 1.0

package ff since 2.0

prototype R.ff

http://cran.r-project.org/web/packages/ff

Development

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

http://r-forge.r-project.org/projects/ff/

Production

5

Statistical methods that can be scaled to large data problems
using the infrastructure provided by packages bit and ff

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

Basic infrastructure for large objects packages bit and ff

Basic infrastructure for chunking packages bit and ff

Reading and writing csv files (chunked sequential access with package ff)

Data transformation (chunked and partially parallelized with package R.ff)

Math and probability distributions (chunked and parallelized with package R.ff)

Data filtering (chunked and parallelized, supported by bit and ff)

Descriptive statistics on chunks (chunked and parallelized, supported by ff)

Biglm and bigglm (chunked fitting with package biglm)

Bootstrapping (chunked and parallelized random access)

Bagged predictive modelling (chunked and parallelized random access)

Bagged clustering (chunked and parallelized random access with truecluster)

Likelihood maximization (chunked and parallelized sequential access)

EM-algorithm (chunked and partially parallelized)

Some linear algebra (chunked processing with package R.ff)

• matrix transpose

• matrix multiplication

• matrix inversion

• svd for many rows and few columns

Saving and loading ff archives (incremental save and selective load with package ff)

new today:

ffsave / ffload

6

Infrastructure in bit and ff addresses a complexity of performance-critical
topics

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

Complexities in scope of ff and bit

• virtual objects by reference avoid copying and RAM duplication

• disk based objects manage temporary and permanent objects on disk

• memory efficient data types minimize storage requirements of data

• memory efficient subscript types minimize storage requirements of subscripts

• fast chunk access methods allow fast (random) access to disk – for chunks of data

• fast index (pre)processing minimize or avoid cost of subscript preparation

• chunk processing infrastructure foundation for efficient chunked processing

• large csv import/export interface large datasets

• large data management conveniently manage all files behind ff

Complexities partially in scope

• parallel processing parallel access to large datasets (without locking)

Complexities in scope of R.ff

• basic processing of large objects elementwise operations and more

• some linear algebra for large objects t, vt, matmul, matinv, few column svd

Currently not in scope

• full linear algebra for large objects observe package bigmemory

7

Basic memory organisation

Hard Disk

filesystem

cache

R

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

choice of fs

write cache
?

SSD

RAID
?

8

Architecture behind packages ff and bit implements several performance
optimizations

Hybrid Index

Preprocessing ...

… fast

access methods …

… memory mapped

compressed pages

• HIP

– parsing of index

expressions instead of

memory consuming

evaluation

– ordering of access

positions and re-ordering

of returned values

– rapid rle packing of

indices if and only if rle

representation uses less

memory compared to raw

storage

• Hybrid copying semantics
– virtual dim/dimorder()

– virtual windows vw()

– virtual transpose vt()

• New performance generics
– clone(), update(),

swap(), add(),

chunk(), bigsample()

• Efficient coercions

• C-code accelerating

is.unsorted() and rle() for
integers: intisasc(),
intisdesc(),

intrle()

• C-code for looping over

hybrid index can handle

mixed raw and rle packed

indices in arrays and

avoids multiplication

• C-code for looping over

bit: outer loop fixes word

in processor cache, inner

loop handles bits

• Tunable pagesize and

system caching=
c("mmnoflush",

"mmeachflush")

• Custom datatype bit-

level en/decoding,

‚add‘ arithmetics and NA

handling
•Ported to Windows, Mac

OS, Linux and BSDs
•Large File Support

(>2GB) on Linux
•Paged shared memory

allows parallel

processing
•Fast creation and

modification of large

files on sparse

filesystems

R frontend C interface C++ backend

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

9

Basic example: creating atomic vectors

R example

ri <- integer(10)

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff examples

library(ff)

fi <- ff(vmode="integer", length=10)

fb <- ff(vmode="byte", length=10)

rb <- byte(10) # in R this is integer

fb <- ff(rb)

vmode(ri)

vmode(fi)

vmode(rb)

vmode(fb)

cbind(.rambytes, .ffbytes)[c("integer","byte"),]

?vmode

10

Atomic data types supported by ff

boolean

logical

quad

nibble

byte

ubyte

short

ushort

integer

single

double

complex

raw

character

1 bit logical no NA

2 bit logical with NA

2 bit unsigned integer no NA

4 bit unsigned integer no NA

8 bit signed integer with NA

8 bit unsigned integer no NA

16 bit signed integer with NA

16 bit unsigned integer no NA

32 bit signed integer with NA

32 bit float

64 bit float

2x64 bit float

8 bit unsigned char

fixed widths, tbd.

implemented

not implemented

vmode(x)

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

Compounds

factor

ordered

custom compounds

•Date

•POSIXct

•POSIXlt (not atomic)

11

Advanced example: creating atomic vectors

R example

rf <- factor(levels= c("A","T","G","C"))

length(rf) <- 10

rf

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff examples

frf <- ff(rf)

length(frf) <- 1e8

frf

frf[11:1e8] <- NA

ff(vmode="quad", length=1e8, levels=c("A","T","G","C"))

ff(vmode="quad", length=10

, levels=c("A","B","C","D"), ordered=TRUE)

ff(Sys.Date()+0:9, length=10)

ff(Sys.time()+0:9, length=10)

ff(0:9, ramclass="Date")

ff(0:9, ramclass=c("POSIXt", "POSIXct"))

str(ff(as.POSIXct(as.POSIXlt(Sys.time(), "GMT")), length=12))

12

Limiting R's RAM consumption through chunked processing

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff example

> str(chunk(fd))

List of 50

$:Class 'ri' int [1:3] 1 2000000 100000000

$:Class 'ri' int [1:3] 2000001 4000000 100000000

$:Class 'ri' int [1:3] 4000001 6000000 100000000

[snipped]

simple as seq but balancing chunk size

> args(chunk.default)

function (from = NULL, to = NULL, by = NULL, length.out = NULL

, along.with = NULL, overlap = 0L, method = c("bbatch", "seq"), ...)

automatic calculation of chunk size

> args(chunk.ff_vector)

function (x

, RECORDBYTES = .rambytes[vmode(x)]

, BATCHBYTES = getOption("ffbatchbytes")

, ...)

by default limited at 1% of available RAM

> getOption("ffbatchbytes") / 1024^2 / memory.limit()

[1] 0.01

13

Basic example: working with atomic vectors

R example

rd <- double(100)

rd[] <- runif(100) # write

rd[] # this is the proper non-lazy way to read

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff example

fd <- ff(vmode="double", length=1e8)

system.time(

for (i in chunk(fd)) fd[i] <- runif(sum(i))

)

system.time(

s <- lapply(chunk(fd)

, function(i)quantile(fd[i], c(0.05, 0.95)))

)

crbind(s)

14

Negligible RAM duplication for parallel execution on ff objects

Hard Disk

filesystem

cache

R R R R R

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

choice of fs

write cache
?

SSD

RAID
?

15

Advanced example: working parallel with atomic vectors

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

library(snowfall)

finalizer(fd)

let slaves not delete fd on shutdown

finalizer(fd) <- "close"

sfInit(parallel=TRUE, cpus=2, type="SOCK")

sfLibrary(ff)

sfExport("fd") # do not export the same ff multiple times

sfClusterEval(open(fd)) # explicitely opening avoids a gc problem

system.time(

sfLapply(chunk(fd), function(i){

fd[i] <- runif(sum(i))

invisible()

})

)

system.time(

s <- sfLapply(chunk(fd)

, function(i) quantile(fd[i], c(0.05, 0.95)))

)

sfClusterEval(close(fd)) # for completeness

csummary(s)

sfStop()

16

Supported index expressions

x[1, 1]

x[-(2:12)]

x[c(TRUE, FALSE, FALSE), 1]

x["a", 1]

x[rbind(c(1,1))]

x[i & i, 1]

x[as.bitwhich(i), 1]

x[ri(1,1), 1]

x[as.hi(1) ,1]

x[0]

x[NA]

(which) positive integers

negative integers

logical

character

integer matrices

bit

bitwhich

range index

hybrid index

zeros

NAs

implemeneted

not implemented

x <- ff(1:12, dim=c(3,4), dimnames=list(letters[1:3], NULL))

i <- as.bit(c(TRUE, FALSE, FALSE))

Example

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

expression

ff's internal index

17

Basic example: working with bit filters

R example

l <- rd > 0.99

rd[l]

1e8 * .rambytes["logical"] / (1024^2) # 381 MB for logical

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff example

b1 <- b2 <- bit(length(fd))

system.time(b1[] <- c(FALSE, TRUE))

system.time(for (i in chunk(fd)) b2[i] <- fd[i] > 0.99)

system.time(b <- b1 & b2)

object.size(b) / (1024^2)

system.time(x <- fd[b])

x[1:10]

sum(b) / length(b) # less dense than 1/32

w <- as.bitwhich(b)

sum(w) / length(w)

object.size(w) / (1024^2)

system.time(x <- fd[w])

x[1:10]

18

Advanced example: working with hybrid indexing

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff example

hp <- as.hi(b) # ignores pack=FALSE

object.size(hp) / (1024^2)

system.time(x <- fd[hp])

x[1:10]

hu <- as.hi(w, pack=FALSE)

object.size(hu) / (1024^2)

system.time(x <- fd[hu])

x[1:10]

Don't do

as.hi(1:1e8)

Do

as.hi(quote(1:1e8))

hi(1, 1e8)

ri(1, 1e8)

chunk(1, 1e8, by=1e8)

19

Supported data structures

c("ff_vector","ff")

c("ff_array","ff")

c("ff_matrix","ff_array","ff")

c("ffdf","ff")

c("ff_dist","ff_symm","ff")

c("ff_mixed", "ff")

vector

array

matrix

data.frame

symmetric matrix

with free diag

symmetric matrix

with fixed diag

distance matrix

mixed type arrays

instead of

data.frames

soon on CRAN

prototype available

not yet implemented

class(x)

ff(1:12)

ff(1:12, dim=c(2,2,3))

ff(1:12, dim=c(3,4))

ffdf(sex=a, age=b)

ff(1:6, dim=c(3,3)

, symm=TRUE, fixdiag=NULL)

ff(1:3, dim=c(3,3)

, symm=TRUE, fixdiag=0)

example

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

20

Basic example: working with arrays (and matrices)

R example: physically stored by column

array(1:12, dim=c(3,4)) # read by column

matrix(1:12, 3,4, byrow=TRUE) # read by row

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff example: physically stored by column – like columnar OLAP

ff(1:12, dim=c(3,4)) # read by column

ff(1:12, dim=c(3,4), bydim=c(2,1)) # read by row

ff example: physically stored by row – like OLTP database

ff(1:12, dim=c(3,4), dimorder=c(2,1)) # read by column

ff(1:12, dim=c(3,4), dimorder=c(2,1), bydim=c(2,1)) # read by row

fm <- ff(1:12, dim=c(3,4), dimorder=c(2,1))

get.ff(fm, 1:12) # note the physical order

fm[1:12] # [. exhibits standard R behaviour

ncol(fm) <- 1e8 # not possible with this dimorder

nrow(fm) <- 1e8 # possible with this dimorder

fm <- ff(vmode="double", dim=c(1e4, 1e4))

system.time(fm[1,] <- 1) # column store: slow

system.time(fm[,1] <- 1) # column store: fast

even more pronounced difference for caching="mmeachflush"

21

Hybrid copying semantics: physical and virtual attributes

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

x <- ff(1:12, dim=c(3,4))

x

> str(physical(x))

List of 9

$ vmode : chr "integer" ff(); vmode()

$ maxlength: int 12 ff(); maxlength()

$ pattern : chr "ff" pattern()<-

$ filename : chr filename()<-

"D:/DOCUME~1/JENSOE~1/LOCALS~1/Temp/RtmpKDilKg/ff462a1d5a.ff"

$ pagesize : int 65536 open(, pagesize=)

$ finalizer: chr "delete" finalizer()<-

$ finonexit: logi TRUE ff()

$ readonly : logi FALSE open(, readonly=)

$ caching : chr "mmnoflush" open(, caching=)

> str(virtual(x))

List of 4

$ Length : int 12 length()<-

$ Dim : int [1:2] 3 4 dim()<-

$ Dimorder : int [1:2] 1 2 dimorder()<-

$ Symmetric: logi FALSE ff(); symmetric()

22

Hybrid coyping semantics in action: different virtual ‘views’ into same ff

a <- ff(1:12, dim=c(3,4))

b <- a

dim(b) <- c(4,3)

dimorder(b) <- c(2:1)

> a

ff (open) integer length=12(12) dim=c(3,4) dimorder=c(1,2)

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> b

ff (open) integer length=12(12) dim=c(4,3) dimorder=c(2,1)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

vt(a) # shortcut to virtually transpose

t(a) # == clone(vt(a))

a virtual

transpose

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

23

Basic example: working with data.frames

R example

id <- 1:12

gender <- sample(factor(c("male","female","unknown")), 12, TRUE)

rating <- matrix(sample(1:6, 12*10, TRUE), 12, 10)

colnames(rating) <- paste("r", 1:10, sep="")

df <- data.frame(id, gender, rating)

df[1:3,]

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff example

fid <- as.ff(id); fgender <- as.ff(gender); frating <- as.ff(rating)

fdf <- ffdf(id=fid, gender=fgender, frating)

identical(df, fdf[,])

fdf[1:3,] # data.frame

fdf[,1:4] # data.frame

fdf[1:4] # ffdf

fdf[] # ffdf

fdf[[2]] # ff

fdf$gender # ff

24

Advanced example: physical structure of data.frames

R example

remember that 'rating' was a matrix

but data.frame has copied to columns (unless we use I(rating))

str(df)

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff example

physical(fdf) # ffdf has *not* copied anything

lets' physically copy

fdf2 <- ffdf(id=fid, gender=fgender, frating, ff_split=3)

physical(fdf2)

filename(fid)

filename(fdf$id)

filename(fdf2$id)

nrow(fdf2) <- 1e6

fdf2[1e6,] <- fdf[1,]

fdf2

nrow(fdf2) <- 12

understand this error: pros and cons of embedded ff_matrix

nrow(fdf) <- 16

understand what this does to the original fid and fgender

fdf3 <- fdf[1:2]

nrow(fdf3) <- 16

fgender

nrow(fdf3) <- 12

25

Basic example: reading and writing csv

R example

write.csv(df, file="df.csv")

cat(readLines("df.csv"), sep="\n")

df2 <- read.csv(file="df.csv")

df2

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff example

write.csv.ffdf # we leverage R's original functions

args(write.table.ffdf) # arguments of the workhorse function

write.csv.ffdf(fdf, file="fdf.csv")

cat(readLines("fdf.csv"), sep="\n")

fdf2 <- read.csv.ffdf(file="fdf.csv")

fdf2

identical(fdf[,], fdf2[,])

26

Advanced example: physical specification when reading a csv

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff example

vmode(fdf2)

args(read.table.ffdf)

fdf2 <- read.csv.ffdf(file="fdf.csv"

, asffdf_args = list(vmode=list(quad="gender", nibble=3:12))

, first.rows = 1

, next.rows = 4

, VERBOSE=TRUE)

fdf2

fdf3 <- read.csv.ffdf(file="fdf.csv"

, asffdf_args = list(vmode=list(nibble=3:12)

, ff_join=list(3:12)

)

)

fdf3

understand "unknown factor values mapped to first level"

read.csv.ffdf(file="fdf.csv"

, asffdf_args = list(vmode=list(quad="gender", nibble=3:12))

, appendLevels = FALSE

, first.rows = 2

, VERBOSE=TRUE)

27

Basic example: file locations and file survival

R example: objects are not permanent

rm(df) simply removes the object

when closing R with q() everything is gone

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff example: object data in files is POTENTIALLY permanent

rm(fdf) just removes the R object,

the next gc() triggers a finalizer which acts on the file

when closing R with q()

the attribute finonexit decides whether the finalizer is called

finally fftempdir is unlinked

physical(fd)

dir(getOption("fftempdir"))

changing file locations and finalizers

sapply(physical(fdf2), finalizer)

filename(fdf2) # filename(ff) <- changes one ff

pattern(fdf2) <- "./cwdpat_"

filename(fdf2) # ./ renamed to cwdpat_ in getwd()

sapply(physical(fdf2), finalizer) # AND set finalizers to "close"

pattern(fdf2) <- "temppat_"

filename(fdf2) # renamed to temppat_ in fftempdir

sapply(physical(fdf2), finalizer) # AND set finalizers to "delete"

28

Closing example: managing ff archives

R example

save.image() saves all R objects (but not ff files)

load() restores all R objects (if ff files exist, ff objects work)

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

ff example

get rid of the large objects (takes too long for demo)

delete(frf); rm(frf)

delete(fd); rm(fd)

delete(fm); rm(fm)

rm(b, b1, b2, w, x, hp, hu)

ffsave.image(file="myff") # => myff.RData + myff.ffData

close R

open R

library(ff)

str(ffinfo(file="myff"))

ffload(file="myff", list="fdf2")

sapply(physical(fdf2), finalizer)

yaff <- ff(1:12)

ffsave(yaff, file="myff", add=TRUE)

ffdrop(file="myff")

29

SOME DETAILS
NOT PRESENTED

IN THE SESSION

30

Before you start, make sure you read the important warnings in

getOption("fftempdir") == "D:/.../Temp/RtmpidNQq9"

getOption("ffextension") == "ff"

getOption("fffinonexit") == TRUE

getOption("ffdrop") == TRUE # or always drop=FALSE

getOption("ffpagesize") == 65536 # getdefaultpagesize()

getOption("ffcaching") == "mmnoflush" # or "mmeachflush"

getOption("ffbatchbytes") == 16104816 # default 1% of RAM Win32

set this under Linux !!

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

The default behavior of ff can be configured in options()

library(ff)

?LimWarn

31

Behavior on rm() and on q()

If we create or open an ff file, C++ resources are allocated, the file is opened and a

finalizer is attached to the external pointer, which will be executed at certain events to

release these resources.

Available finalizers
close releases C++ resources and closes file (default for named files)

delete releases C++ resources and deletes file (default for temp files)

deleteIfOpen releases C++ resources and deletes file only if file was open

Finalizer is executed
rm(); gc() at next garbage collection after removal of R-side object

q() at the end of an R-session (only if finonexit=TRUE)

Wrap-up of temporary directory
.onUnload getOption("fftempdir") is unliked and all ff-files therein deleted

You need to understand these mechanisms, otherwise you might suffer …

… unexpected loss of ff files

… GBs of garbage somewhere in temporary directories

Check and set the defaults to your needs …
… getOption("fffinonexit")

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

32

Update, cloning and coercion

plug in temporary result into original ff object

update(origff, from=tmpff, delete=TRUE)

deep copy with no shared attributes

y <- clone(x)

three variants to cache complete ff object

into R-side RAM and write back to disk later

variant deleting ff

ramobj <- as.ram(ffobj); delete(ffobj)

some operations purely in RAM

ffobj <- as.ff(ramobj)

variant retaining ff

ramobj <- as.ram(ffobj); close(ffobj)

some operations purely in RAM

ffobj <- as.ff(ramobj, overwrite=TRUE)

variant using update

ramobj <- as.ram(ffobj)

update(ffobj, from=ramobj)

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

33

Atomic access functions, methods and generics

swap(,add=FALSE)

swap.default

[<-.(,add=FALSE)

add(x,i,value)

[indexed access
with HIP and vw

for ram compatibility

readwrite.ffwrite.ffread.ffcontiguous vector

getset.ffset.ffget.ffsingle element

combined
reading and writingwritingreading

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

34

HIP optimized disk access

Hybrid Index Preprocessing (HIP)

ffobj[1:1000000000] will silently submit the index information to

as.hi(quote(1:1000000000)) which does the HIP:

� rather parses than expands index expressions like 1:1000000000

� stores index information either plain or as rle-packed index

increments (therefore 'hybrid')

� sorts the index and stores information to restore order

Benefits

� minimized RAM requirements for index information

� all elements of ff file accessed in strictly increasing position

Costs

� RAM needed for HI may double RAM for plain index (due to re-ordering)

� RAM needed during HIP may be higher than final index (due to sorting)

Currently preprocessing is almost purely in R-code

(only critical parts in fast C-code: intisasc, intisdesc, inrle)

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

35

Random access to permanent vector of integer: cost of HIP in [.ff and [<-.ff
is well-invested compared to naive access in get.ff and set.ff

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

read 100K/512K

set.ff [<-.ff

0
.0

0
.2

0
.4

0
.6

0
.8

0.374 0.02

write 100K/512K

set.ff [<-.ff

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0.038 0.004

read 100K/512K mmeachflush

set.ff [<-.ff

0
.0

0
.2

0
.4

0
.6

0
.8

0.544 0.02

write 100K/512K mmeachflush

set.ff [<-.ff

0
2

4
6

8

6.478 0.029

read 100K/512M mmeachflush

set.ff [<-.ff

0
.0

0
.2

0
.4

0
.6

0
.8

0.692 0.325

write 100K/512M mmeachflush

set.ff [<-.ff

0
1

0
2

0
3

0
4

0
5

0

44.021 20.374

seconds

36

Parsing of index expressions

The parser knows ‘c()’ and ‘:’, nothing else

[.ff calls as.hi like as.hi(quote(index.expression))

efficient index expressions

a <- 1

b <- 100

as.hi(quote(c(a:b, 100:1000))) # parsed (packed)

as.hi(quote(c(1000:100, 100:1))) # parsed and reversed (packed)

neither ascending nor descending sequences

as.hi(quote(c(2:10,1))) # parsed, but then expanded and sorted

plus RAM for re-ordering

parsing aborted when finding expressions with length>16

x <- 1:100; as.hi(quote(x)) # x evaluated, then rle-packed

as.hi(quote((1:100))) #() stopped here, ok in a[(1:100)]

parsing skipped

as.hi(1:100) # index expanded , then rle-packed

parsing and packing skipped

as.hi(1:100, pack=FALSE) # index expanded

as.hi(quote(1:100), pack=FALSE) # index expanded

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

37

RAM considerations

ff is currently limited to length(ff)==.Machine$max.integer

storing 370 MB integer data

> a <- ff(0L, dim=c(1000000,100))

obviously 370 MB for return value

b <- a[]

zero RAM for index or recycling

a[] <- 1 # thanks to recycling in C

a[] <- 0:1

a[1:100000000] <- 0:1 # thanks to HIP

a[100000000:1] <- 1:0

Attention: 370 MB for recycled value

a[, bydim=c(2,1)] <- 0:1

don't do this

a[offset+(1:100000000)] <- 1 # better: a[(o+1):(o+n)] <- 1

5x 370MB during HIP # Without chunking final costs are

a[sample(100000000)] <- 1 # 370 MB index + 370 MB re-order

a[sample(100000000)] <- 0:1 # dito + 370 MB recycling

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

38

Lessons from RAM investigation

rle() requires up to 9x its input RAM*

without using structure() reduces to 7x RAM

intrle() uses an optimized C version, needs

up to 2x RAM and is by factor 50 faster.

Trick: intrle returns NULL if compression

achieved is worse than 33.3%. Thus the RAM

needed is maximal

- 1/1 for the input vector

- 1/3 for collecting values

- 1/3 for collecting lengths

- 1/3 buffer for copying to return value

* Measured in version 2.6.2

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

39

vw(ff)<-

dim()

length()

dim(ff) <- c(3,4)

dimorder(ff) <- c(2,1)

length(ff) <- 12

ff <- ff(length=16)

maxlength(ff)==16 # readonly

A physical to virtual hierarchy

physical

virtual / physical

virtual dimension

virtual window the offset, window and rest components of
vw must match current length and dim

dim must match current length

physical length change

physical file size

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts

R.ff: cubelet

processing

