Managing large datasets in R – ff examples and concepts

Jens Oehlschlägel

Vienna
January 2010

This report contains public intellectual property. It may be used, circulated, quoted, or reproduced for distribution as a whole. Partial citations require a reference to the author and to the whole document and must not be put into a context which changes the original meaning. Even if you are not the intended recipient of this report, you are authorized and encouraged to read it and to act on it. Please note that you read this text on your own risk. It is your responsibility to draw appropriate conclusions. The author may neither be held responsible for any mistakes the text might contain nor for any actions that other people carry out after reading this text.
The statistical interpreter R is hungry for RAM and therefore limited to dataset sizes much smaller than available RAM. R packages 'bit' and 'ff' provide the basic infrastructure to handle large data problems in R. In this session we give an introduction into 'bit' and 'ff' – interweaving working examples with short explanation of the most important concepts.

An open-source vision for R

give free access to excellent statistical software to everyone ...

... for processing large datasets even with standard hardware
Design goals: base packages for large data objects in R

- **large data**
 - many objects ($\text{sum(sizes)} > \text{RAM}$ and …)
 - large objects ($\text{size} > \text{RAM}$ and virtual address space limitations)

- **standard HW**
 - limited RAM (or enjoy speedups)
 - single disk (or enjoy RAID)
 - single processor (or shared processing)

- **minimal RAM**
 - required RAM \ll maximum RAM
 - be able to process large data in background

- **maximum performance**
 - close to in-RAM performance if size $< \text{RAM}$ (system cache)
 - still able to process if size $> \text{RAM}$
 - avoid costs of redundant access to disk (time, electricity, CO_2)

Authors

Daniel Adler dadler@uni-goettingen.de
package rgl
package ff since 1.0
dynCall project: dynamic C interface
in work: dynamic compilation and streaming for R

Jens Oehlschlägel Jens_Oehlschlaegel@truecluster.com
package bit since 1.0
package ff since 2.0
prototype R.ff

Development

http://r-forge.r-project.org/projects/ff/

Production

http://cran.r-project.org/web/packages/ff

Statistical methods that can be scaled to large data problems using the infrastructure provided by packages bit and ff

Basic infrastructure for large objects packages bit and ff
Basic infrastructure for chunking packages bit and ff
Reading and writing csv files (chunked sequential access with package ff)

Data transformation (chunked and partially parallelized with package R.ff)
Math and probability distributions (chunked and parallelized with package R.ff)
Data filtering (chunked and parallelized, supported by bit and ff)
Descriptive statistics on chunks (chunked and parallelized, supported by ff)
Biglm and bigglm (chunked fitting with package biglm)
Bootstrapping (chunked and parallelized random access)
Bagged predictive modelling (chunked and parallelized random access)
Bagged clustering (chunked and parallelized random access with truecluster)
Likelihood maximization (chunked and parallelized sequential access)
EM-algorithm (chunked and partially parallelized)
Some linear algebra (chunked processing with package R.ff)
 • matrix transpose
 • matrix multiplication
 • matrix inversion
 • svd for many rows and few columns

Saving and loading ff archives (incremental save and selective load with package ff)

Infrastructure in bit and ff addresses a complexity of performance-critical topics

Complexities in scope of ff and bit
- virtual objects by reference
- disk based objects
- memory efficient data types
- memory efficient subscript types
- fast chunk access methods
- fast index (pre)processing
- chunk processing infrastructure
- large csv import/export
- large data management

Complexities partially in scope
- parallel processing

Complexities in scope of R.ff
- basic processing of large objects
- some linear algebra for large objects

Currently not in scope
- full linear algebra for large objects

avoid copying and RAM duplication
manage temporary and permanent objects on disk
minimize storage requirements of data
minimize storage requirements of subscripts
allow fast (random) access to disk – for chunks of data
minimize or avoid cost of subscript preparation
foundation for efficient chunked processing
interface large datasets
conveniently manage all files behind ff

parallel access to large datasets (without locking)

elementwise operations and more
t, vt, matmul, matinv, few column svd

observe package bigmemory

Basic memory organisation

Architecture behind packages ff and bit implements several performance optimizations

- HIP
 - Parsing of index expressions instead of memory consuming evaluation
 - Ordering of access positions and re-ordering of returned values
 - Rapid rle packing of indices if and only if rle representation uses less memory compared to raw storage
- Hybrid copying semantics
 - Virtual dim/dimorder()
 - Virtual windows vw()
 - Virtual transpose vt()
- New performance generics
 - Clone(), update(), swap(), add(), chunk(), bigsample()
- Efficient coercions
- C-code accelerating is.unsorted() and rle() for integers: intisasc(), intisdesc(), intrle()
- C-code for looping over hybrid index can handle mixed raw and rle packed indices in arrays and avoids multiplication
- C-code for looping over bit: outer loop fixes word in processor cache, inner loop handles bits
- Tunable pagesize and system caching=c("mmnoflush", "mmeachflush")
- Custom datatype bit-level en/decoding, 'add' arithmetics and NA handling
- Ported to Windows, Mac OS, Linux and BSDs
- Large File Support (>2GB) on Linux
- Paged shared memory allows parallel processing
- Fast creation and modification of large files on sparse filesystems

Basic example: creating atomic vectors

R example
ri <- integer(10)

ff examples
library(ff)
fi <- ff(vmode="integer", length=10)
fb <- ff(vmode="byte", length=10)

rb <- byte(10) # in R this is integer
fb <- ff(rb)

vmode(ri)
vmode(fi)
vmode(rb)
vmode(fb)

cbind(.rambytes, .ffbytes)[c("integer","byte"),]
?vmode

Atomic data types supported by ff

<table>
<thead>
<tr>
<th><code>vmode(x)</code></th>
<th>Implemented</th>
<th>Not implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>1 bit logical</td>
<td>no NA</td>
</tr>
<tr>
<td>logical</td>
<td>2 bit logical</td>
<td>with NA</td>
</tr>
<tr>
<td>quad</td>
<td>2 bit unsigned integer</td>
<td>no NA</td>
</tr>
<tr>
<td>nibble</td>
<td>4 bit unsigned integer</td>
<td>no NA</td>
</tr>
<tr>
<td>byte</td>
<td>8 bit signed integer</td>
<td>with NA</td>
</tr>
<tr>
<td>ubyte</td>
<td>8 bit unsigned integer</td>
<td>no NA</td>
</tr>
<tr>
<td>short</td>
<td>16 bit signed integer</td>
<td>with NA</td>
</tr>
<tr>
<td>ushort</td>
<td>16 bit unsigned integer</td>
<td>no NA</td>
</tr>
<tr>
<td>integer</td>
<td>32 bit signed integer</td>
<td>with NA</td>
</tr>
<tr>
<td>single</td>
<td>32 bit float</td>
<td></td>
</tr>
<tr>
<td>double</td>
<td>64 bit float</td>
<td></td>
</tr>
<tr>
<td>complex</td>
<td>2x64 bit float</td>
<td></td>
</tr>
<tr>
<td>raw</td>
<td>8 bit unsigned char</td>
<td></td>
</tr>
<tr>
<td>character</td>
<td>fixed widths, tbd.</td>
<td></td>
</tr>
</tbody>
</table>

Compounds

- factor
- ordered
- custom compounds
 - Date
 - POSIXct
 - POSIXlt (not atomic)
Advanced example: creating atomic vectors

```r
# R example
rf <- factor(levels = c("A", "T", "G", "C"))
length(rf) <- 10
rf
```

```r
# ff examples
frf <- ff(rf)
length(frf) <- 1e8
frf
frf[11:1e8] <- NA
ff(vmode = "quad", length = 1e8, levels = c("A", "T", "G", "C"))
ff(vmode = "quad", length = 10,
  levels = c("A", "B", "C", "D"), ordered = TRUE)
ff(Sys.Date() + 0:9, length = 10)
ff(Sys.time() + 0:9, length = 10)
ff(0:9, ramclass = "Date")
ff(0:9, ramclass = c("POSIXt", "POSIXct"))
str(ff(as.POSIXct(as.POSIXlt(Sys.time(), "GMT")), length = 12))
```

Limiting R's RAM consumption through chunked processing

ff example
> str(chunk(fd))
List of 50
$:Class 'ri' int [1:3] 1 2000000 100000000
$:Class 'ri' int [1:3] 2000001 4000000 100000000
$:Class 'ri' int [1:3] 4000001 6000000 100000000
[snipped]

simple as seq but balancing chunk size
> args(chunk.default)
function (from = NULL, to = NULL, by = NULL, length.out = NULL
, along.with = NULL, overlap = 0L, method = c("bbatch", "seq"), ...)

automatic calculation of chunk size
> args(chunk.ff_vector)
function (x
, RECORDBYTES = .rambytes[vmode(x)]
, BATCHBYTES =getOption("ffbatchbytes")
, ...
)

by default limited at 1% of available RAM
> getOption("ffbatchbytes") / 1024^2 / memory.limit()
[1] 0.01
Basic example: working with atomic vectors

R example
rd <- double(100)
rd[] <- runif(100) # write
rd[] # this is the proper non-lazy way to read

ff example
fd <- ff(vmode="double", length=1e8)

system.time(
 for (i in chunk(fd)) fd[i] <- runif(sum(i))
)

system.time(
 s <- lapply(chunk(fd), function(i)quantile(fd[i], c(0.05, 0.95)))
)

crbind(s)

Negligible RAM duplication for parallel execution on ff objects

library(snowfall)
finalizer(fd)
let slaves not delete fd on shutdown
finalizer(fd) <- "close"

sfInit(parallel=TRUE, cpus=2, type="SOCK")
sfLibrary(ff)
sfExport("fd") # do not export the same ff multiple times
sfClusterEval(open(fd)) # explicity opening avoids a gc problem

system.time(
 sfLapply(chunk(fd), function(i){
 fd[i] <- runif(sum(i))
 invisible()
 })
)

system.time(
 s <- sfLapply(chunk(fd), function(i) quantile(fd[i], c(0.05, 0.95)))
)

sfClusterEval(close(fd)) # for completeness
csummary(s)
sfStop()
Supported index expressions

<table>
<thead>
<tr>
<th>Expression</th>
<th>Implemented</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(which) positive integers</td>
<td></td>
<td><code>x[1, 1]</code></td>
</tr>
<tr>
<td>negative integers</td>
<td></td>
<td><code>x[-(2:12)]</code></td>
</tr>
<tr>
<td>logical</td>
<td></td>
<td><code>x[c(TRUE, FALSE, FALSE), 1]</code></td>
</tr>
<tr>
<td>character</td>
<td></td>
<td><code>x["a", 1]</code></td>
</tr>
<tr>
<td>integer matrices</td>
<td></td>
<td><code>x[rbind(c(1,1))]</code></td>
</tr>
<tr>
<td>bit</td>
<td></td>
<td><code>x[i & i, 1]</code></td>
</tr>
<tr>
<td>bitwhich</td>
<td></td>
<td><code>x[as.bitwhich(i), 1]</code></td>
</tr>
<tr>
<td>range index</td>
<td></td>
<td><code>x[ri(1,1), 1]</code></td>
</tr>
<tr>
<td>hybrid index</td>
<td></td>
<td><code>x[as.hi(1) ,1]</code></td>
</tr>
<tr>
<td>zeros</td>
<td></td>
<td><code>x[0]</code></td>
</tr>
<tr>
<td>NAs</td>
<td></td>
<td><code>x[NA]</code></td>
</tr>
</tbody>
</table>

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts
Basic example: working with bit filters

R example
l <- rd > 0.99
rd[l]
le8 * .rambytes["logical"] / (1024^2) # 381 MB for logical

ff example
b1 <- b2 <- bit(length(fd))
system.time(b1[] <- c(FALSE, TRUE))
system.time(for (i in chunk(fd)) b2[i] <- fd[i] > 0.99)
system.time(b <- b1 & b2)
object.size(b) / (1024^2)
system.time(x <- fd[b])
x[1:10]

sum(b) / length(b) # less dense than 1/32

w <- as.bitwhich(b)
sum(w) / length(w)
object.size(w) / (1024^2)
system.time(x <- fd[w])
x[1:10]

Advanced example: working with hybrid indexing

```r
# ff example
hp <- as.hi(b)       # ignores pack=FALSE
object.size(hp) / (1024^2)
system.time( x <- fd[hp] )
x[1:10]

hu <- as.hi(w, pack=FALSE)
object.size(hu) / (1024^2)
system.time( x <- fd[hu] )
x[1:10]

# Don't do
as.hi(1:1e8)

# Do
as.hi(quote(1:1e8))
hi(1, 1e8)
ri(1, 1e8)
chunk(1, 1e8, by=1e8)
```

Supported data structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Example</th>
<th>class(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector</td>
<td><code>ff(1:12)</code></td>
<td><code>c("ff_vector","ff")</code></td>
</tr>
<tr>
<td>array</td>
<td><code>ff(1:12, dim=c(2,2,3))</code></td>
<td><code>c("ff_array","ff")</code></td>
</tr>
<tr>
<td>matrix</td>
<td><code>ff(1:12, dim=c(3,4))</code></td>
<td><code>c("ff_matrix","ff_array","ff")</code></td>
</tr>
<tr>
<td>data.frame</td>
<td><code>ffdf(sex=a, age=b)</code></td>
<td><code>c("ffdf","ff")</code></td>
</tr>
<tr>
<td>symmetric matrix with free diag</td>
<td><code>ff(1:6, dim=c(3,3), symm=TRUE, fixdiag=NULL)</code></td>
<td></td>
</tr>
<tr>
<td>symmetric matrix with fixed diag</td>
<td><code>ff(1:3, dim=c(3,3), symm=TRUE, fixdiag=0)</code></td>
<td><code>c("ff_dist","ff_symm","ff")</code></td>
</tr>
<tr>
<td>distance matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mixed type arrays instead of data.frames</td>
<td></td>
<td><code>c("ff_mixed","ff")</code></td>
</tr>
</tbody>
</table>

Basic example: working with arrays (and matrices)

R example: physically stored by column
array(1:12, dim=c(3,4)) # read by column
matrix(1:12, 3,4, byrow=TRUE) # read by row

ff example: physically stored by column – like columnar OLAP
ff(1:12, dim=c(3,4)) # read by column
ff(1:12, dim=c(3,4), bydim=c(2,1)) # read by row

ff example: physically stored by row – like OLTP database
ff(1:12, dim=c(3,4), dimorder=c(2,1)) # read by column
ff(1:12, dim=c(3,4), dimorder=c(2,1), bydim=c(2,1)) # read by row

fm <- ff(1:12, dim=c(3,4), dimorder=c(2,1))
get.ff(fm, 1:12) # note the physical order
fm[1:12] # [.] exhibits standard R behaviour
ncol(fm) <- 1e8 # not possible with this dimorder
nrow(fm) <- 1e8 # possible with this dimorder

fm <- ff(vmode="double", dim=c(1e4, 1e4))
system.time(fm[1,] <- 1) # column store: slow
system.time(fm[,1] <- 1) # column store: fast
even more pronounced difference for caching="mmeachflush"

Hybrid copying semantics: physical and virtual attributes

```r
x <- ff(1:12, dim=c(3,4))
x

> str(physical(x))
List of 9
  $ vmode : chr "integer" ff(); vmode()
  $ maxlength: int 12 ff(); maxlength()
  $ pattern : chr "ff" pattern()<-  
  $ filename : chr "D:/DOCUME~1/JENSOE~1/LOCALS~1/Temp/RtmpKDilKg/ff462a1d5a.ff"
  $ pagesize : int 65536 open(, pagesize=)
  $ finalizer: chr "delete" finalizer()<- 
  $ finonexit: logi TRUE ff()
  $ readonly: logi FALSE open(, readonly=)
  $ caching : chr "mmnoflush" open(, caching=)

> str(virtual(x))
List of 4
  $ Length : int 12 length()<- 
  $ Dim : int [1:2] 3 4 dim()<-  
  $ Dimorder : int [1:2] 1 2 dimorder()<- 
  $ Symmetric: logi FALSE ff(); symmetric()
```

Hybrid copying semantics in action: different virtual ‘views’ into same ff

```r
a <- ff(1:12, dim=c(3,4))
b <- a
dim(b) <- c(4,3)
dimorder(b) <- c(2:1)

> a
ff (open) integer length=12(12) dim=c(3,4) dimorder=c(1,2)
[1,]  1  4  7 10
[2,]  2  5  8 11
[3,]  3  6  9 12

> b
ff (open) integer length=12(12) dim=c(4,3) dimorder=c(2,1)
   [,1] [,2] [,3]
[1,]  1  2  3
[2,]  4  5  6
[3,]  7  8  9
[4,] 10 11 12

vt(a)  # shortcut to virtually transpose
t(a)  # == clone(vt(a))
```

Basic example: working with data.frames

```r
# R example
id <- 1:12
gender <- sample(factor(c("male","female","unknown")), 12, TRUE)
rating <- matrix(sample(1:6, 12*10, TRUE), 12, 10)
colnames(rating) <- paste("r", 1:10, sep="")
df <- data.frame(id, gender, rating)
df[1:3,]
```

```r
# ff example
fid <- as.ff(id); fgender <- as.ff(gender); frating <- as.ff(rating)
fdf <- ffdf(id=fid, gender=fgender, frating)
identical(df, fdf[,])
fdf[1:3,]   # data.frame
fdf[,1:4]   # data.frame
fdf[1:4]    # ffdf
fdf[]       # ffdf
fdf[[2]]    # ff
fdf$gender  # ff
```
Advanced example: physical structure of data.frames

R example
remember that 'rating' was a matrix
but data.frame has copied to columns (unless we use I(rating))
str(df)

ff example
physical(fdf) # ffdf has *not* copied anything
lets' physically copy
fdf2 <- ffdf(id=fid, gender=fgender, frating, ff_split=3)
physical(fdf2)
filename(fid)
filename(fdf$id)
filename(fdf2$id)
nrow(fdf2) <- 1e6
fdf2[1e6,] <- fdf[1,]
fdf2
nrow(fdf2) <- 12
understand this error: pros and cons of embedded ff_matrix
nrow(fdf) <- 16
understand what this does to the original fid and fgender
fdf3 <- fdf[1:2]
nrow(fdf3) <- 16
fgender
nrow(fdf3) <- 12

Basic example: reading and writing csv

```r
# R example
write.csv(df, file="df.csv")
cat(readLines("df.csv"), sep="\n")
df2 <- read.csv(file="df.csv")
df2
```

```r
# ff example
write.csv.ffdf # we leverage R's original functions
args(write.table.ffdf) # arguments of the workhorse function

write.csv.ffdf(fdf, file="fdf.csv")
cat(readLines("fdf.csv"), sep="\n")

fdf2 <- read.csv.ffdf(file="fdf.csv")
fdf2
identical(fdf[,], fdf2[,])
```

Advanced example: physical specification when reading a csv

```r
# ff example
vmode(fdf2)
args(read.table.ffdf)
fdf2 <- read.csv.ffdf(file="fdf.csv"
, asffdf_args = list(vmode=list(quad="gender", nibble=3:12))
, first.rows = 1
, next.rows = 4
, VERBOSE=TRUE)
fdf2

fdf3 <- read.csv.ffdf(file="fdf.csv"
, asffdf_args = list( vmode=list(nibble=3:12)
    , ff_join=list(3:12)
)
)
fdf3

# understand "unknown factor values mapped to first level"
read.csv.ffdf(file="fdf.csv"
, asffdf_args = list(vmode=list(quad="gender", nibble=3:12))
, appendLevels = FALSE
, first.rows = 2
, VERBOSE=TRUE)
```

Basic example: file locations and file survival

R example: objects are not permanent
rm(df) simply removes the object
when closing R with q() everything is gone

ff example: object data in files is POTENTIALLY permanent
rm(fdf) just removes the R object,
the next gc() triggers a finalizer which acts on the file
when closing R with q()
the attribute finonexit decides whether the finalizer is called
finally fftempdir is unlinked
physical(fd)
dir(getOption("fftempdir"))

changing file locations and finalizers
sapply(physical(fdf2), finalizer)
filename(fdf2) # filename(ff) <- changes one ff
pattern(fdf2) <- "./cwdpat_"
filename(fdf2) # ./ renamed to cwdpat_ in getwd()
sapply(physical(fdf2), finalizer) # AND set finalizers to "close"
pattern(fdf2) <- "temppat_"
filename(fdf2) # renamed to temppat_ in fftempdir
sapply(physical(fdf2), finalizer) # AND set finalizers to "delete"

R example
save.image() saves all R objects (but not ff files)
load() restores all R objects (if ff files exist, ff objects work)

ff example

get rid of the large objects (takes too long for demo)
delete(frf); rm(frf)
delete(fd); rm(fd)
delete(fm); rm(fm)
rm(b, b1, b2, w, x, hp, hu)

ffsave.image(file="myff") # => myff.RData + myff.ffData
close R
open R
library(ff)
str(ffinfo(file="myff"))
ffload(file="myff", list="fdf2")
sapply(physical(fdf2), finalizer)

yaff <- ff(1:12)
ffsave(yaff, file="myff", add=TRUE)
ffdrop(file="myff")
SOME DETAILS
NOT PRESENTED
IN THE SESSION
Before you start, make sure you read the important warnings in

```r
library(ff)
?LimWarn
```

The default behavior of `ff` can be configured in `options()`

```r
getOption("fftempdir") == "D:/.../Temp/RtmpidNQq9"
getOption("ffextension") == "ff"
getOption("fffinonexit") == TRUE
getOption("ffdrop") == TRUE         # or always drop=FALSE
getOption("ffpagesize") == 65536     # getdefaultpagesize()
getOption("ffcaching") == "mmnoflush" # or "mmeachflush"
getOption("ffbatchbytes") == 16104816 # default 1% of RAM Win32
# set this under Linux !!
```

Behavior on \texttt{rm()} and on \texttt{q()}

If we create or open an ff file, C++ resources are allocated, the file is opened and a finalizer is attached to the external pointer, which will be executed at certain events to release these resources.

Available finalizers

\begin{itemize}
 \item \texttt{close} releases C++ resources and closes file (default for named files)
 \item \texttt{delete} releases C++ resources and deletes file (default for temp files)
 \item \texttt{deleteIfOpen} releases C++ resources and deletes file only if file was open
\end{itemize}

Finalizer is executed

\begin{itemize}
 \item \texttt{rm(); gc()} at next garbage collection after removal of R-side object
 \item \texttt{q()} at the end of an R-session (only if \texttt{finonexit=TRUE})
\end{itemize}

Wrap-up of temporary directory

\begin{itemize}
 \item .\texttt{onUnload} \quad \texttt{getOption("fftempdir")} is unliked and all ff-files therein deleted
\end{itemize}

You need to understand these mechanisms, otherwise you might suffer ...

... unexpected loss of ff files

... GBs of garbage somewhere in temporary directories

Check and set the defaults to your needs ...

... \texttt{getOption("fffinonexit")}

Update, cloning and coercion

plug in temporary result into original ff object
update(origff, from=tmpff, delete=TRUE)

deep copy with no shared attributes
y <- clone(x)

three variants to cache complete ff object
into R-side RAM and write back to disk later

variant deleting ff
ramobj <- as.ram(ffobj); delete(ffobj)
some operations purely in RAM
ffobj <- as.ff(ramobj)

variant retaining ff
ramobj <- as.ram(ffobj); close(ffobj)
some operations purely in RAM
ffobj <- as.ff(ramobj, overwrite=TRUE)

variant using update
ramobj <- as.ram(ffobj)
update(ffobj, from=ramobj)

Atomic access functions, methods and generics

<table>
<thead>
<tr>
<th></th>
<th>reading</th>
<th>writing</th>
<th>combined reading and writing</th>
</tr>
</thead>
<tbody>
<tr>
<td>single element</td>
<td>get.ff</td>
<td>set.ff</td>
<td>getset.ff</td>
</tr>
<tr>
<td>contiguous vector</td>
<td>read.ff</td>
<td>write.ff</td>
<td>readwrite.ff</td>
</tr>
<tr>
<td>indexed access</td>
<td>[</td>
<td>[<-.(,add=FALSE)</td>
<td>swap,(,add=FALSE)</td>
</tr>
<tr>
<td>with HIP and vw</td>
<td></td>
<td>add(x,i,value)</td>
<td>swap.default</td>
</tr>
<tr>
<td>for ram compatibility</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HIP optimized disk access

Hybrid Index Preprocessing (HIP)
ffobj[1:1000000000] will silently submit the index information to as.hi(quote(1:1000000000)) which does the HIP:

- rather parses than expands index expressions like 1:1000000000
- stores index information either plain or as rle-packed index increments (therefore 'hybrid')
- sorts the index and stores information to restore order

Benefits
- minimized RAM requirements for index information
- all elements of ff file accessed in strictly increasing position

Costs
- RAM needed for HI may double RAM for plain index (due to re-ordering)
- RAM needed during HIP may be higher than final index (due to sorting)

Currently preprocessing is almost purely in R-code (only critical parts in fast C-code: intisasc, intisdesc, inrle)

Random access to permanent vector of integer: cost of HIP in [.ff and [<-.ff is well-invested compared to naive access in get.ff and set.ff

seconds

Parsing of index expressions

The parser knows ‘c()’ and ‘:’, nothing else
[.ff calls as.hi like as.hi(quote(index.expression))

efficient index expressions
a <- 1
b <- 100
as.hi(quote(c(a:b, 100:1000))) # parsed (packed)
as.hi(quote(c(1000:100, 100:1))) # parsed and reversed (packed)

neither ascending nor descending sequences
as.hi(quote(c(2:10,1))) # parsed, but then expanded and sorted
 # plus RAM for re-ordering

parsing aborted when finding expressions with length>16
x <- 1:100; as.hi(quote(x)) # x evaluated, then rle-packed
as.hi(quote((1:100))) #() stopped here, ok in a[(1:100)]

parsing skipped
as.hi(1:100) # index expanded, then rle-packed
parsing and packing skipped
as.hi(1:100, pack=FALSE) # index expanded
as.hi(quote(1:100), pack=FALSE) # index expanded

RAM considerations

```r
# ff is currently limited to length(ff)==.Machine$max.integer

# storing 370 MB integer data
> a <- ff(0L, dim=c(1000000,100))

# obviously 370 MB for return value
b <- a[]

# zero RAM for index or recycling
a[] <- 1  # thanks to recycling in C
a[] <- 0:1
a[1:100000000] <- 0:1  # thanks to HIP
a[100000000:1] <- 1:0

# Attention: 370 MB for recycled value
a[, bydim=c(2,1)] <- 0:1

# don't do this
a[offset+(1:100000000)] <- 1  # better: a[(o+1):(o+n)] <- 1

# 5x 370MB during HIP  # Without chunking final costs are
a[sample(100000000)] <- 1  # 370 MB index + 370 MB re-order
a[sample(100000000)] <- 0:1  # dito + 370 MB recycling
```

Lessons from RAM investigation

rle() requires up to $9x$ its input RAM*

without using *structure*() reduces to $7x$ RAM

intrle() uses an optimized C version, needs up to $2x$ RAM and is by factor 50 faster.

Trick: *intrle* returns **NULL** if compression achieved is worse than 33.3%. Thus the RAM needed is maximal
- 1/1 for the input vector
- 1/3 for collecting values
- 1/3 for collecting lengths
- 1/3 buffer for copying to return value

* Measured in version 2.6.2

A physical to virtual hierarchy

- `vw(ff) <- dim()`
- `length()`
- `dim(ff) <- c(3,4)`
- `dimorder(ff) <- c(2,1)`
- `length(ff) <- 12`
- `ff <- ff(length=16)`
- `maxlength(ff)==16` # readonly

The offset, window and rest components of `vw` must match current `length` and `dim`.

Source: Oehlschlägel (2010) Managing large datasets in R – ff examples and concepts